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CHAPTER 1. THE LIMIT L1 INTRODUCTION

1.1 Introduction

1.1.1 The Limit and Continuous Functions

The graph in Figure 1 depicts two cycles of the function
f(x) = sinx. This function is characteristic of the set of
“smooth” functions ', namely those whose graphs vary smoothly
over the domain of the function with no breaks or sharp
corners. The former quality, that the graph of a “smooth”
function like f(x) = sin x can be sketched without breaks, is

Y
; referred to as continuity on its domain. A more precise defi-
nition will have to wait until we have in hand the definition
\ : of the limit
Figure 2 zooms into the region of the plot with
LI LI n ) i frox
" A \ " / 17 21n
\_/, 7] 32

We notice in the figure that as x approaches 7 from either the
left or the right, the values of sin(x) “smoothly” approach
the value sin(}) = 1. This is the behavior we expect of the
basic continuous functions such as polynomials, the sine and
cosine functions and the exponential functions.

Figure 1

\
( Observation 1. If f is defined on an open interval
I and is continuous at x, € I, then as the variable
x approaches x, from both sides, the values of f(x)
approach the value f(xy). We will use the following
symbolic notation to indicate this limiting process:

lim f(x) = f(xo) (1)

X+ XQ

N Y,

Referring back to Figure 2, we may apply our geometric
o / R \ intuition to conclude that f(x) = sinx is continuous at

1.00

098 |-

0.96

0.94

0.92

Xp= —727 and write

It 1in 19 20—
- & . = l]m sin(x))= Sm( )()
2
Figure 2 'In Chapter 2 we will give a precise definition of “smooth” functions.
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L1 INTRODUCTION

However this very nice behavior of the basic functions
does not persist for more general functions. In Figure 3 we
have the plot of a function with a removable discontinuity,
defined by

left red curve in Figure 3 if x < x,
flx) = N fx=x0 (2
right red curve in Figure 3 if x > x,

The key observation in this case is that as the independent
variable x approaches the fixed point x; the values of the
function approach the value y, while f(x,) = y; # y,. The
lesson is:

4 A

Observation 2. A function f can

1. be defined at x,, and

2. approach a limiting value y, as x approaches
X from both sides,

but y, need not be equal to f(x,). )

Example 1. Sketch the graph of the function given by ‘“-[, %52 i e

P b( x) = wt 2
ifx+2
d ®)
D =2
Solution: We saw the first part of this function in Chapter 0.
The graph of f is a line with a hole in it. The second part of
Formula 3 implies that the domain of this function is R. But
the line still has a hole, so f is still discontinuous at x = 2.
Figure 4 presents a sketch of this function.

If we change the definition of f so that f(2) = 4, then
the hole is filled in and the discontinuity is removed.
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CHAPTER 1. THE LIMIT L1 INTRODUCTION

The question to address here is:

How is the engineer’s instantaneous speed at the Interstate 40 marker related to the
average speed for the total trip?

A glance at the table shows that in fact there is little correlation. This fact is due to the wide
variation in the engineer’s speed. At the beginning of the trip the speed is slow as the engineer works
his way through the city to [-40. He then accelerates up to highway speed, which varies over the trip,
and then his speed slows as he enters Raleigh city limits. Hence instantaneous speed and average
speed have little correlation when the distance of the trip is large. To improve the correlation we need
to cut down the distance traveled on either side of the central marker so that the variation in speed is
reduced. We could cut the distance in half and then to a fourth of the original distance. Comparing
the new average speeds over the shortened distances with the instantaneous speed will show a much
closer correlation. Continuing to decrease the distance will force the instantaneous speed to be more
closely related to the average speed. In fact, what we need is a way to make the distance as short as
possible, and this leads us to the idea of the limit of the average speed as the distance and time for the
trip shrink to zero. The next two illustrations show how we can shrink the distance AD of the trip
that is centered on the I-40 marker.

Raleigh, NC Durham, NC Raleigh, NC

Durham, NC

=rt =T s

If we let At denote the total time for the middle part of the trip centered on the 1-40 marker and
denote by AD the distance of that portion of the trip, then the distance traveled AD is a function of
the time traveled At and as At — 0 we have AD — 0. Our definition of instantaneous speed at the

neous Speed = gltmo Average Speed

——

hr
The concept is intuitive, but the question remains as to how we are to-compute this limit. We again

need a precise definition of the limit of a function.
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CHAPTER 1. THE LIMIT L1 INTRODUCTION

We now apply the same idea to develop the concept of a of a tangent line to an arbitrary smooth
curve in the plane. In Figure 12 we have an example of a smooth planar curve that is the graph of a
function f. The secant lines connecting Py and Py appear to approach the blue line, which we take to

be the tangent line at P.

’ 4

‘,\‘l!\

e
et :

b\

socant line I 1

Figure 12: The tangent line at P, appears to be approached by the secant lines PyP;, k = 1,2,3 ---

To get a better picture and eventually determine the equation of the tangent line, we can zoom into
the plot as shown in Figure 13.

Figure 13
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CHAPTER 1. THE LIMIT 1.1. INTRODUCTION \
( \co

The coordinates (xo, f(x0)) of Py and the coordinates (x, f(x)) of P determine the sl(;]{ oéthe év_).bL_.)
secant line Py P, represented by the following difference quotient:

by f®) - f(x) s
secant line — -
Ax X — Xy / \\(o <

-,

With this notation we see that the point P approaches Py as x approaches x,. Consequently the slope
of the tangent line will be given by the limit of this difference quotient. —
Y —= ¥

L) - flx)
@nc sccamllne = }11110 P (2)
=% — A

This slope of the tangent line at a point on a curve has many applications. One of these applications
is to obtain the equation of the tangent line at a point P,.

N

(@E—of the Tangent Line
Let the smooth planar curve C be the graph of a function f. The slope of the secant line

through Py = (x0, f(x0)) and P = (x, f(x)) is given by M . The slope m of the

tangent line at P, is
N\ f(x) = f(x0)
lim\——— =
XEE’ X — Xo muu

So the equation of the tangent line to C at the point Py = (xo, f(x)) in point-slope form is:

e = ol {ien W
N Y T e

which can be re-writtena . 2 0= ¥\ (% - ){0)
f(x) - f(x0)
Txu—) (x = xo) (4)

y:fu@+(mn

X—=Xxg

\_ J

Example 2. Show that P(1,2) is on the graph of the function f(x) = 3x - 1 and find the equation of
the tangent line to the graph of f at this point.

Solution: Since f(1) =31 ~1= 2, P(1,2) is on the graph of the function f(x) = 3x2 - 1. The slope
of the secant line from P(1,2) to (x, f(x)) (where x # 1) is

Ay _f¥)-f) 3xP-1-2 3(x+1)(x-1)

msccamline - Ax X — 1 — ¥ — I x — 1

=3(x+1)
The slope of the tangent line to the curve at P(1,2) is

m=1imﬂxT):If(—l)—=Li_r}}3(x+l)=3-2:6

x—=1
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CHAPTER 1. THE LIMIT L.2. DEFINITION OF THE LIMIT OF A FUNCTION

1.2 Definition of the Limit of a Function

In the plot below we have the graph of a smooth function f with the values of f(x,) and x, marked
on the y- and x-axes respectively. As we saw in Section L1, the values of f(x) approach the value
f(x0) as x approaches x, from both sides.

= YAan (_-—.Dor-
—F(x.){—}'/ t b 3

The goal here is to write down a definition of limit that captures this property. The idea goes as follows.
Suppose we want to require that the values of f(x) differ in absolute value from f(x;) by some small
positive constant, traditionally called ¢. That is, we require f(x) —& < f(x) < f(xp) + ¢ as illustrated
in Figure 18 for a specific choice of ¢. This is usually written in the compact form

Lf(%) - f(xo)l <& (5)
Y
A |
T T
m\\‘ [
SO0 E e SR SR, VO |
e [ SR ':"'{“a
18N
J(xq) — ¢ Sl
(i
1
Lo
P e
1
L) \
— L
; x
f
Jl'n
Figure 18
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CHAPTER 1. THE LIMIT 1.2. DEFINITION OF THE LIMIT OF A FUNCTION

We readily see in this case that Inequality (5) is true for values of x lying inside the vertical blue
box in Figure 19, that is, when the values of x satisfy the inequalities x) - § < x < x, + &, usually

written as
x = x| < & (6)

Y
A |
|
w—?“ oo
S (T0) F e e - s
0) + ; ﬁ W“““n‘., :
_____ Bl §.. SRl o
: F
: LN
F@o) — ¢ detem . Ll tk %':%
¢ st ]
i (/ A “‘-\
L L\
et \, Choose x in ~the
——— L GSnegiiorheed)
. ' X e
&y — 0 | Iy + ) Q’kjﬁ'o/ i
I
&, le-w]<§ <

Within O vmts ot

Figure 19 ~+argeT x-value

You'll notice that this interval is symmetric around x, with the choice of & determined by where the
vertical lines at xo ~ § and x, + & intersect the curve. Consequently the interval does not extend as
far left as it could; for example, x = 0 < xo — & clearly satisfies Inequality (5) but is not included in the
blue vertical box. Nonetheless we see from Figure 19 that whenever x is inside the blue vertical box,
f(x) is inside the green horizontal box. Symbolically we write:

Observation 4( Ijx satisfies |x - xy| < 0, then f(x) satisfies |f(x) - f(xo)| <e.

=
“onelvs o
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CHAPTER 1. THE LIMIT 1.2. DEFINITION OF THE LIMIT OF A FUNCTION

A glance back at Figure 3 in Section 1.1 shows we need a slightly more general concept than that
shown in Figure 21 to capture the idea of the limit. Figure 3 shows a situation where certainly the
function f has a limit at x,, but that limit is not f(x,). Thus we need to replace f(x,) as the limit
point by the symbol L standing for “limit”. We will also have to replace |x — xo| < 8 by the condition
0 < |x = xo| < & to allow for this possibility. It is this last step, putting 0 < |x — x|, that truly defines
the concept of the limit. While we include points arbitrarily close to x,, we do 1ot include x, itself,
This allows us to define L = y; as the limit of f at xo, despite the fact that f(x) = y; # yp (in other
examples, f might not even be defined at x;).

The following definition DOES NOT show us how to compute a limit, but rather it shows us how
to verify whether or not a given number L is the limit of a function at a given point. The power of
such an apparently weaker definition is in the theorems we can prove based upon it. We will develop
and study these theorems in the remainder of this chapter.

— Definition 1. Limit (> ~sded )
Let I be an open interval containing the point xo. Assume that the function f is defined on a
domain D containing all points of the interval I except possibly Xg. We say that the limit of

the function f at x, is L, written
e -

hypothests [ im f (_Ji) =Ly

X=Xg

@or each € > 0 there is a number § > 0 such tha@ satisfies 0 < I'}E_Yl x€land

f(x) satisfies ||f(x) - L| < e —
L : [HORIRD P

[ Fen] il ) Hhen | $tw) )L &

REMARK: Informally, this definition says that if we choose x closer and closer to x,, and if this
process forces f(x) closer and closer to L, then

lim f(x)=L

X—=Xp

In each of the two examples below we take the following approach to applying Definition 1. Given
a function f, a point x, a candidate L for the limit, and an arbitrary & > 0, we must find a 8 > 0 that
works in this particular case. In most cases, the § we find will depend on &. Since ¢ was arbitrary,
finding such a 6 for this particular & means that a suitable & exists for all ¢ > 0, allowing us to conclude
by Definition 1 that }LTO f(x) = L. We note that the results we obtain using this formal process agree

with those we obtained using graphs and geometric intuition in the previous subsections.

Example 3. Let b be any constant. If f(x) = b for all x € R, then for all x, € R,

X—Xp

lim f(x)=b
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CHAPTER I. THE LIMIT 1.2. DEFINITION OF THE LIMIT OF A FUNCTION

Solution: We select an arbitrary ¢ > 0 and look for a § > 0 such that if x satisfies
0 < |x —x0| < 6,
then f(x) satisfies | f(x) — b| < & . However since f(x) = b,
f(x)-bl=|b-b]=0<e

for all x, so § is arbitrary and any & > 0 is acceptable in this extremely trivial case. Thus we conclude
that lim f(x) = b. That is, the limit of a constant function f(x) = b is the constant b at every x,

X—=>Xo
value.

The following simple result has important implications for computing limits of other functions.

Example 4. For all x, € R verify that
Iim x = Xo

X—=Xg

Solution: Let f(x) = x. Selecting an arbitrary ¢ > 0, we look for a § > 0 such that whenever x
satisfies 0 < [x — xo| < §, the value of the function f at x satisfies |f(x) - xy| < e. Since f(x) = x we
have [f(x) — xo| = |x — xo|. Hence by choosing & = & we have

O0<|x-xo|<8=¢ =0<|f(x)-x|<e¢

Recall that the symbol = means implies. Thus the limit of f(x) = x at any x; € R is x,.

We want 2[x — 4] < ¢, which is equivalent to

lx— 4] < »2‘? By choosing § = ; we have

4 Example 5. Use Definition 1 to show that
9+ - -4 lim(2x +1) = 9
o 1 /
Reg b o Solution: Let f(x) = 2x+1. Selecting an arbitrary
o e > 0, we look for a § > 0 such that whenever x
8 it satisfies 0 < |x — 4| < &, the value of the function f
6 T b at x satisfies | f(x) — 9| < &. Since f(x) = 2x +1 we
E 5 have
4 T b |f(x) =9 =[(2x +1) - 9| = |2x - 8] = 2|x - 4|

Y

/ i ; 0<|x-4J<5=§ = |f(x)=9| = 2)x—4| <28 = ¢
4-§ 4 444 X
/ Hence the limit of f(x) =2x+1latx =41is9.

4-£/2 4+€/2
lim(2x+1) =9
x—4

Figure 22
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CHAPTER 1. THE LIMIT 1.2, DEFINITION OF THE LIMIT OF A FUNCTION

1.2.1 Theorems on Limits

We can use the precise definition of the limit provided in Definition 1 to verify limits in simple cases.
However for even mildly complicated functions it is difficult and in most cases impossible to use the
definition to verify a limit. Moreover, recall that the definition did not tell us how to find the number
L. We need to have a suitable candidate for L before we can begin to use the definition. Nonetheless,
the definition is such that it may be used to prove a number of theorems on limits. We now quote
these well-known basic results which are proved in courses on advanced calculus. Proofs of 5 and 6
in Theorem 1 were given in the previous two examples.

r R

Theorem 1. Theorems on Limits
Assume that functions f and g have limits L, and L, at the point x; so that

lim f(x) =L, and lim g(x) =1,
\ [ X—=>Xo

X—Xq

Then:
L lim(f+g)(x)=L +L,

X—+Xp

2 }Lﬂ;} (fg)(X) = L1L2

. f L . )
3. }Lrgo (g (k)= L ( provided L, # 0
4. lim (kf)(x) = kL, foreverykinR
X=Xy

5 limb=0b  foreverybinR

X=*Xp

6. lim x = xy

NG J

Our next goal is to use Theorem 1 to compute the limit of any polynomial function.

L U TR
Example 5. Let P(x) = 7x% + 4x + 10. Calculat lim P(x).
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CHAPTER 1. THE LIMIT 1.2. DEFINITION OF THE LIMIT OF A FUNCTION

Solution: Using the rules from Theorem 1 we find

lim P(x) = lim(7x*+4x +10)

X—=Xp X—Xxg
= lim(7x*) + lim (4x) + lim (10) (part 1 of the theorem)
X=X X—+Xq X—+Xg

= 7lim(x*) +4 lim (x) + 10 (parts 4 and 5 of the theorem)
X—+Xq X=rXg

2
= 7 (lim (x)) +4xp + 10 (parts 2 and 6 of the theorem)

X—=>Xq
= 7x%+4x+10 (part 6 of the theorem)
=: P(xo)

We anticipated the result of the last example in Section 1.1 for “basic smooth functions’, and
polynomials fall into this category. It should be clear that we can use the same steps to compute the
limit of any given n'*-degree polynomial function. However this process would be cumbersome for
large n. To prove that this result is true for all polynomials in an efficient way we would need to use
the principle of mathematical induction, which we leave to advanced calculus.

s D

%C Theorem 2. Let P be an n'" degree polynomial function
—_—

P(x) = anx@+ an—lx@"' a:z-2@+"'+a1x+ﬂo g =23, (7)

i e e, .

rlond — Neg

Then for each xy € R I NTEAERS

lim P(x) = P(x,) (8)

L o] y

In many situations we will encounter a limit of the form

- f(x)e(x)
A g(x)

where g(x) = 0. This quotient function is not defined at x = x, but is equal to f(x) at all points
where g(x) # 0. If g(x) is non-zero at the rest of the points in an open interval containing x,, then
this quotient function is equal to f(x) on this open interval except at x. Recall, as emphasized in the
discussion prior to Definition 1, that the limit of a function at x; is determined solely by the values of
the function at x-values near x,, and is independent of the behavior of the function af x,. Thus the

limit of the quotient function Lxg%ﬂ at xp is equal to the limit of the simplified function f(x) at
g(x
Xo as long as this limit exists.
lim M = lim f(x)
X=Xy g(x) X—+Xg

This is a specific case of the following theorem.
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